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INTRODUCTION

As the Anthropocene drives accelerating global change, 
resilience is an important and desirable characteristic of 
ecological systems (Folke et al., 2004). Resilience has a 
range of definitions, but it generally refers to the capac-
ity of an ecosystem to absorb or withstand perturbations 
and other stressors, while still maintaining essentially 
the same function, structure and feedbacks (Carpenter 
et  al.,  2001; Holling,  1973; Meyer,  2016; Walker 
et  al.,  2004; see Figure  1). Resilient ecosystems do not 
remain entirely unchanged in the face of perturbations. 
However, certain critical properties of the system are re-
tained—there could be important ecological processes 
such as nutrient cycling, or ecosystem services, such as 

fishery yields (Healey,  2009; Krkošek & Drake,  2014; 
Waldman et al., 2016).

In conservation and applied ecology, a major hurdle 
to the application of resilience theory is the need for an 
accurate quantitative understanding of ecosystem dy-
namics. A primary approach to measuring the resilience 
of an ecological system is to create and parameterize 
a dynamical model of the system and then to simulate 
its response to perturbations (Carpenter et  al.,  2001; 
Meyer,  2016; Mumby et  al.,  2014; Urruty et  al.,  2016). 
However, the complexity of ecological systems, paired 
with sparse, noisy data sets, make this parameter esti-
mation process very challenging (Adams et  al.,  2020; 
Botelho et al., 2024; Carpenter et al., 2005; Meyer, 2016; 
Remien et al., 2021).
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Abstract
Resilient ecological systems are more likely to persist and function in the 
Anthropocene. Current methods for estimating an ecosystem's resilience rely 
on accurately parameterized ecosystem models, which is a significant empirical 
challenge. In this paper, we adapt tools from biochemical kinetics to identify 
ecological networks that exhibit ‘structural resilience’, a strong form of resilience 
that is solely a property of the network structure and is independent of model 
parameters. We undertake an exhaustive search for structural resilience across all 
three- species ecological networks, under a generalized Lotka- Volterra modelling 
framework. Out of 20,000 possible network structures, approximately 2% display 
structural resilience. The properties of these networks provide important insights 
into the mechanisms that could promote resilience in ecosystems, provide new 
theoretical avenues for qualitative modelling approaches and provide a foundation 
for identifying robust forms of ecological resilience in large, realistic ecological 
networks.
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Resilience would be easier to identify and oper-
ationalize if it were a structural property of the eco-
system—that is, a consequence of the shape of the 
ecological network, rather than the strengths of all the 
interactions. Indeed, the search for ecosystem struc-
tures that could robustly deliver resilience was an early 
motivation for qualitative modelling (Bode et al., 2017; 
Dambacher et  al.,  2003; Levins,  1974; Raymond 
et al., 2011). The existence of such ‘structural resilience’ 
would effectively side- step the empirical challenges of 
estimating the parameters of ecosystem models. It is 
much easier to identify that a particular species inter-
action is competitive, for example, than it is to estimate 
the per- capita strength of that competition (Adams 
et al., 2020; Botelho et al., 2024). Studies into resilience 
of socioecological systems have also proposed that 
certain networks structures—‘motifs’—can support 
resilience (Barnes et  al.,  2017; Janssen et  al.,  2006). 
However, this research is phenomenological: a small 
number of resilient network motifs are proposed, pri-
marily on the basis of intuition, and their association 
with resilient dynamics is assessed statistically. This 
limits the insights that these methods can offer to other 
systems and the generality of their conclusions.

Within living organisms, biochemical reaction net-
works can exhibit ‘robust perfect adaptation’ (RPA), 
a phenomenon that is closely analogous to structural 
resilience (Alon et  al.,  1999; Araujo & Liotta,  2023a; 
Kaupp, 2010; Ma et al., 2009). In RPA networks, a subset 
of chemical species are able to precisely maintain or re-
cover their abundances following press or pulse pertur-
bations (Araujo & Liotta, 2018; Ma et al., 2009). RPA is 
an important and common property of cellular systems, 
despite external perturbations. It has been observed in 
systems scaling from chemotaxis within single- celled 
organisms (Alon et  al.,  1999; Kollmann et  al.,  2005; 

Levchenko & Iglesias,  2002; Macnab & Koshland 
Jr,  1972; Parent & Devreotes,  1999; Yi et  al.,  2000) 
through to complex sensory systems such as our sense of 
smell (Kaupp, 2010; Matthews & Reisert, 2003; Reisert 
& Matthews, 2001; Yau & Hardie, 2009). In a sense, the 
whole biochemical reaction network can be understood 
as a perturbation- absorbing mechanism which ensures 
that key outputs are maintained at a consistent level 
(Araujo & Liotta, 2018, 2023a, 2023b; Ma et al., 2009; see 
Figure 1).

Crucially, RPA is solely a property of the struc-
ture of the biochemical reaction network (Araujo & 
Liotta, 2018, 2023b). Identifying robust perfect adapta-
tion therefore does not require precise knowledge of the 
parameter values of the network model, a fact that is 
both conceptually interesting and practically import-
ant in biochemistry and ecology. (Hereafter, to avoid 
interdisciplinary confusion, we will eschew the term 
adaptation and refer only to structural resilience. This 
is because in ecology and evolution, adaptation refers 
to changes to the structure of the network itself, rather 
than the recovery of the system state. Meanwhile, in 
socioecological resilience theory ‘adaptability’ re-
fers to the changing behaviour of actors in the system 
(Barnes et al., 2017; Walker et al., 2004)).

If structural resilience could be found in the dy-
namics of ecological networks, it would represent a 
strong but narrow form of resilience. In an ecosystem 
with structural resilience, the populations of a subset 
of species would return to their exact pre- perturbation 
abundances, despite continuing press perturbations. 
Any ecosystem functions, services or identity that de-
pended primarily on those species would therefore be 
resilient to the perturbation. Moreover, an observer 
would be able to predict this behaviour on the basis of 
the network structure alone, even if they were unable 
to measure the strengths of the interactions between 
the species. However, the remaining species in the sys-
tem would not return to their pre- perturbation abun-
dances. They could not, since it would be these species 
that were together absorbing the effects of the pertur-
bation. The ecosystem would therefore not be resilient 
if its important properties were a function of the abun-
dance of these species.

In this study, we introduce a set of analytical tools 
from biochemical reaction network theory to search 
for the presence of structural resilience in the dynam-
ics of ecological networks. We start by describing an 
algebraic approach for identifying structural resil-
ience and multiple attractors in ecosystem dynam-
ics. Then, we undertake an exhaustive computational 
search through all possible three- species ecosystems 
under the generalized Lotka- Volterra equations—a 
commonly used modelling framework in ecology. 
Third, we identify what properties of the ecosystem 
network structure are required to exhibit structural re-
silience. Finally, we consider how an understanding of 

F I G U R E  1  In this example of structural resilience, or robust 
perfect adaptation, the abundance of species Z returns precisely to its 
original abundance despite a persistent press perturbation. Species Z 
can exhibit structural resilience because species X  absorbs the effects 
of the perturbations and does not return to its original abundance. 
This ecosystem is shown in Figure 3e. Full details on the model 
equations, parameters and initial conditions are given in Supporting 
Information.
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structural resilience could be utilized to pursue practi-
cal conservation outcomes.

M ETHODS

In this section, we introduce the algebraic methods that 
are capable of identifying structural resilience and de-
scribe how we set up an exhaustive search through 
all possible three- node species interaction networks. 
Although we will generally refer to them as species, each 
node could also represent the combined populations of 
similar species (e.g., a functional group or guild (Peterson 
et al., 2021; Zheng et al., 1997)). We model these ecosys-
tems using generalized Lotka- Volterra equations, but 
the methods described in this paper could be applied to 
other functional forms such as Holling- type interactions 
or Rosenzweig- MacArthur models. Similarly, we apply 
press perturbations to the species, but press perturba-
tions could be applied to the interactions in the network. 
To accompany the following discussion, we provide a 
worked example in Supplementary Methods S2 and a 
coded example at https:// zenodo. org/ recor ds/ 12026654 
(Jeynes- Smith,  2024; along with all code developed for 
this study). This coded example can be altered to search 
for structural resilience in networks that have more 
nodes or using models with different functional forms.

Network models

For each interaction network, we check that the abun-
dance of at least one species can be maintained in the face 
of a perturbation that affects one or more of the species. 
We identify this as the network ‘output’, Z. However, we 
will later assess whether the other species, labelled as X  
and Y , are also able to maintain their abundance in the 
face of the perturbation.

We are primarily interested in structural resilience 
to a persistent press perturbation. We consider pertur-
bations that impact one or more of the species in the 
network. This could represent the effects of persistent 
human activity that targets a single species, such as 
fishing or hunting, or conservation management ac-
tions such as invasive species control or supplementary 
feeding. It could also represent management that would 
affect multiple species or the whole ecosystem, such as 
habitat degradation or a long- term change in climatic 
conditions. We do not investigate pulse perturbations, 
such as a single culling event or species translocation, 
nor do we consider perturbations that alter the types of 
interactions between the species.

In their general form, the Lotka- Volterra equations 
(Bode et al., 2017; Lotka, 1925; Volterra, 1926) describe 
the dynamics of the ecosystem as:

where X , Y , and Z are the abundances of the interacting 
species (see Figure 2a); ri is the intrinsic growth rate of spe-
cies i; aij is the (per- capita) interaction constant for how 
species i is affected by species j; and di is the interaction 
constant for how the perturbation, P, affects species i. It 
is by systematically adding and removing combinations 
of these terms that we are able to test for the existence of 
structural resilience in all possible networks.

(1)

dX

dt
=

Intrinsic

Growth

⏞⏞⏞

rXX −

Intraspecific

Competition

⏞⏞⏞

aXXX
2 +

Interspecific

Interactions

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

aXYXY+aXZXZ +

Perturbation

⏞⏞⏞

dXPX ,

(2)
dY

dt
= rYY − aYYY

2 + aYXXY + aYZYZ + dYPY,

(3)
dZ

dt
= rZZ − aZZZ

2 + aZXXZ + aZYYZ + dZPZ,

F I G U R E  2  (a) Graphical representation of ecosystem with three species, X , Y , and Z, and perturbation P. In this ecosystem, Z predates 
on both X  and Y , and X  positively affects Y  without being affected itself. Species X  is affected by the perturbation. Parameters are coloured 
by type: Intraspecific competition (light blue), intrinsic growth rates (blue), interspecific interactions (dark blue) and press perturbations 
(orange). (b) Associated generalized Lotka- Volterra equations.
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Lotka- Volterra equations describe the net effect of di-
rect interactions between species using the interspecific 
interaction parameters, aij: indirect interactions arise 
implicitly (e.g., apparent competition). As an example of 
a direct interaction, Figure  2 includes a predator–prey 
interaction between Y  and Z. The predator, Z, will in-
crease in abundance (positive value of aZY) proportional 
to the abundance of predators and the prey, Y , which are 
available to consume; the prey abundance declines too, 
but according to the rate aYZ. Note, that Z also indirectly 
negatively interacts with Y  via its consumption of X , a 
species which provides a benefit to Y .

Interactions are not limited to predator–prey re-
lationships. The signs of symmetric coefficient pairs, 
(

aij, aji
)

, characterize each interspecific interaction. 
Some common examples include: competition, aij, aji < 0

; mutualism, aij, aji > 0; and predator–prey, aij > 0, aji < 0 
where population i is the predator. Such two- way inter-
actions are visually represented in a network diagram 
by a pair of arrows (e.g., the predator–prey interaction 
between Y  and Z in Figure 2). We also allow for one- way 

interactions, represented with a single arrow, where only 
one species is affected by the interaction either amensal, 
aij = 0, aji ≠ 0; or commensal aij ≠ 0, aji = 0. For example, 
Y  could be said to have a commensal one- way interac-
tion, where it benefits from the presence of X , in Figure 2. 
One- way interactions occur in nature (Abrams,  1987), 
such as ecosystem engineering or allelopathy, but are 
thought to be less common than two- way interactions 
(Dittmann,  1990; Gómez- Aparicio & Canham,  2008; 
Hulme- Beaman et al., 2016; Mathis & Bronstein, 2020; 
Peterson et al., 2021; Rasmussen & Rasmussen, 2018).

The other two key terms in our models are each spe-
cies' intrinsic growth rates, ri, and intraspecific compe-
tition terms, aii. The intrinsic growth term represents 
positive influences on the growth rate of population i 
which are not explicitly included in the network (Barbier 
& Loreau,  2019; Bode et  al.,  2017; O'Dwyer,  2018; 
Peterson et  al.,  2021). These terms are often included 
for lower trophic- level species such as vegetation, where 
the sources of growth like nutrient are modelled im-
plicitly. Intraspecific competition, also referred to as 

F I G U R E  3  Four motifs that produce structural resilience, with three example species interaction networks for each type. Motifs are 
differentiated by (i) the underlying mechanism that enables structural resilience and (ii) how that mechanism interacts with the ecosystem. The 
interaction signs permit stable, feasible steady states. For each type, we specify the number of motifs which had one species (1 Sp.) and two 
species (2 Sp.) with structural resilience.
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self- regulation, occurs where processes such as compe-
tition for the same resources, such as habitat, will ulti-
mately limit a species ability to increase in abundance 
(Anisiu, 2014; Barbier & Loreau, 2019; Bode et al., 2017; 
Hening & Nguyen,  2018; O'Dwyer,  2018; Peterson 
et al., 2021; Wangersky, 1978). We considered networks 
where these terms were both included and excluded for 
each species. Networks where some species do not have 
these terms can still describe feasible ecosystems (i.e., 
where all species can persist). Species without an intrin-
sic growth term can increase by consuming other spe-
cies in the network (Barbier & Loreau,  2019; Peterson 
et  al.,  2021); species without an explicit intraspecific 
competition term can reach stable abundances through 
the limited availability of prey species, or because they 
are controlled by predation (Barbier & Loreau,  2019; 
Lotka, 1925; O'Dwyer, 2018; Volterra, 1926). Ecosystem 
models that do not include both these terms for every 
species in the model are less common in the literature; 
however, because they are ecologically plausible, we in-
clude them in our exhaustive search.

We illustrate a graphical representation of a network 
and the associated Lotka- Volterra equations in Figure 2.

Identifying the capacity for structural resilience

We adapt analytical methods developed by Araujo and 
Liotta (Araujo & Liotta, 2023b) to identify structural re-
silience in ecological systems. These methods can iden-
tify the capacity for structurally resilient networks on the 
basis of their structure alone, regardless of the precise 
strength of these interactions.

We use a full factorial design to enumerate every possi-
ble combination of the terms in Equations (1)–(3). There 
are a total of 5 × 212 = 20,480 possible network structures 
(not considering the sign of the interactions), since there 
are 12 parameters and five unique combinations for how 
the perturbation affects subsets of the species: (i) X , (ii) Z
, (iii) X  and Y , (iv) X  and Z and (v) all three species. Note 
that species X  and Y  are interchangeable which reduces the 
number of unique combinations in which the perturbation 
interacts with the network. Given this large number of 
potential models, efficient methods are needed to exhaus-
tively test for the structural resilience property.

The core of this approach is the realization that any 
network with structural resilience must have a steady- 
state solution in which the abundance of at least one spe-
cies is independent of the perturbation variable (Araujo 
& Liotta, 2023b). We use methods from algebraic geom-
etry, specifically Gröbner bases, to determine whether 
the system's ‘governing equations’ (in this case the gen-
eralized Lotka- Volterra equations) can be algebraically 
transformed (projected) into the following form:

Here p1, p2, p3 are polynomials in the network vari-
ables (e.g., Z, Y , X ), dX∕dt, dY∕dt, dZ∕dt are the gov-
erning equations (e.g., Equations  (1)–(3)), f (P,Z) is a 
polynomial in the perturbation P and target species Z, and 
k is a constant (a function of the network parameters). The 
right- hand side of Equation (4) is referred to as an RPA 
polynomial (see (Araujo & Liotta, 2023b)). Importantly, 
at steady- state (dX∕dt = dY∕dt = dZ∕dt = 0), a solution 
for this system will always be Z = k, which is indepen-
dent of any change to the perturbation, P, and all other 
variables in the network (X  and Y ). This particular solu-
tion, Z = k, is referred to as the setpoint and identifies 
the abundance which the target should return to after 
any disturbance. Importantly f (P,Z) can be used to 
identify all alternative steady states for species Z (Araujo 
& Liotta, 2023b). If this polynomial has several real, sta-
ble solutions, then the system may only display struc-
tural resilience for a limited set of perturbation strengths 
(Araujo & Liotta, 2018, 2023b).

To find a solution for species Z relative to P, it is pos-
sible to manually manipulate the governing equations of 
a network at steady state. For example, consider the fol-
lowing system of Lotka- Volterra equations:

Under the assumption that the equations are at steady 
state and that the abundances are nonzero, we can sim-
plify these equations to be,

We can rearrange Equation (6) to obtain X =
rY

aYX
 and 

substitute this result into Equation (5) to obtain an ex-
pression for Z,

Since this solution for Z is independent of the pertur-
bation, P, and the other variables, X  and Y , the network 
is declared to have the capacity for structural resilience. 
This assumes that all species remain extant and that 
the solution is stable. Importantly, altering the sign or 
strength of the parameters in this solution will not change 
the existence of this solution—a result which held true for 
all networks that we examined. This demonstrates how 
the presence of structural resilience is independent of the 
sign and strength of parameters (Araujo & Liotta, 2018). 
However, as we discuss shortly, the sign and strength of 

(4)p1
dX

dt
+ p2

dY

dt
+ p3

dZ

dt
= f (P,Z)(Z − k).

dX

dt
= −aXXX

2+aXZXZ

dY

dt
= rYY −aYXXY

dZ

dt
= −aZXXZ+aZYYZ−dZPZ

(5)0 = − aXXX + aXZZ,

(6)0 = rY − aYXX ,

(7)0 = − aZXX + aZYY − dZP.

Z =
rY aXX

aYXaXZ
.
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parameters do play an important role in determining 
whether the setpoint, and other solutions of f (P,Z), are 
feasible and stable. We include several worked examples 
of this manual approach in Supplementary Methods S1.

This manual process of manipulating equations can 
be applied to individual networks, however applying this 
to a large number of networks is inefficient. Gröbner 
bases allow the manipulation process to be automated, 
without making any assumptions about species' abun-
dances (Araujo & Liotta,  2023b). A Gröbner basis is 
effectively an alternate presentation of the governing 
equations, which captures all steady states in a form that 
reveals the most relevant steady state properties. In this 
case, we seek to match all steady state solutions for Z to 
the RPA polynomial and identify steady states indepen-
dent of the perturbation (Araujo & Liotta, 2023b). For 
this, we compute a Gröbner basis with an ‘elimination 
ordering’ where the governing equations can be rewrit-
ten with respect to a decreasing number of variables, 
based on a specified order. To identify an RPA polyno-
mial we choose an order in which the target species, Z, 
and the perturbation, P, should be the last variables in 
the set of equations. When we compute a Gröbner basis, 
we confirm the existence of functions p1, p2 and p3 in 
Equation (4), which transform the governing equations 
into the RPA polynomial. A network does not have 
structural resilience if the solutions do not only contain 
the two variables P and Z, or for which the solutions 
cannot be factorized into an RPA polynomial. For an 
in- depth explanation of the underlying mathematics of 
the RPA polynomial and the implementation of Gröbner 
bases, see (Araujo & Liotta,  2023b). We use Matlab's 
(The MathWorks Inc, 2019) symbolic toolkit to automate 
the calculation of Gröbner bases and determine whether 
the solutions can be factorized into an RPA polynomial.

For the above example, an associated Gröbner basis 
is given by,

From this, we can identify the same setpoint that we 
had manually, Z =

rY aXX

aYXaXZ
, but also the other solutions 

to Z in f (P,Z) = rY dZZP
(

aXZaZXZ + aXXdZP
)

. We as-
sume that there is a persistent perturbation, P > 0. If Z 
remains extant, Z > 0, then the only feasible solution is 
when Z is at the setpoint.

Although they can require significant time and 
memory to compute for large or highly connected net-
works (Araujo & Liotta, 2023b), Gröbner bases may be 
calculated for any modelling equations consisting only 
of polynomial functions of the model variables. This 
fact makes them suitable for the study of many mod-
elling frameworks. In addition to the Lotka- Volterra 
equations, other common modelling frameworks, such 
as Holling- type reactions or Rosenzweig- MacArthur 
models, can also be written as polynomials when at 
steady state.

Structural resilience requires the existence of an RPA 
polynomial, however we must still determine whether 
the setpoint, Z = k, is a feasible and stable steady state 
(Araujo & Liotta,  2023b). Feasibility ensures that all 
species have a positive abundance at steady state, while 
stability ensures that our ecosystem can approach that 
steady state. In nature, any observed ecosystem is likely 
to be both feasible and stable (it would not exist without 
these properties), but in our exhaustive search we do not 
want to consider species interaction networks that can-
not stably exist.

Since the projection test significantly reduces the 
number of networks (20,480 to 3142 networks, see 
Supplementary Figure S1), we test for stability and fea-
sibility using 4 × 103 randomly selected parameter sets 
for each network. Note that since structural resilience 
should be independent of fine- tuning parameters, we 
do not require an extensive search of parameter space. 
Parameters are selected from uniform distributions, 
x ∈ (−1, 1) for interspecific or perturbation interaction 
parameters, x ∈ (0, 1) for intrinsic growth rates, and 
x ∈ (−1, 0) for intraspecific competition parameters. 
Any Lotka- Volterra system can be rescaled to have co-
efficients within these bounds without loss of generality 
(Bode et  al.,  2017). We calculate the steady states of a 
network, match these to the setpoint, then substitute in 
random parameter values and check for feasibility for all 
species. If the steady state is feasible, then we check for 
Lyaponuv stability (Lyapunov,  1992). If both stability 
and feasibility conditions are met for any parameter set, 
then the network is capable of structural resilience.

We lastly ensure that successful networks have struc-
tural resilience and not a trivial form in which the output 
species has no reaction to a change in perturbation (Ma 
et al., 2009). We simulate each network, using Matlab's 
(The MathWorks Inc, 2019) ‘ode45’ adaptive solver, and 
check that the output reacts to a change in perturbation 
by at least 1% of its pre- perturbation abundance and 
then returns to within 1% of its pre- perturbation abun-
dance for two perturbations which double in strength 
(P ∈ {1,2,4}) every 1000 time steps. This simulation test 
will reject networks which are readily absorbed by alter-
nate attractors for a set of perturbation strengths. For 
networks which pass all of the above tests, we generate 
2000 parameter sets that enable feasible and stable steady 
states, and use these for further analysis. See Figure S1 
for a graphical representation of this process and the 
number of networks which proceed after each test.

RESU LTS A N D DISCUSSION

In the following sections, we classify the ecosystem net-
works that exhibited structural resilience. We then iden-
tify and explain the specific network structures which 
enable a subset of the species maintain their abundance 
in the face of a persistent press perturbation. We discuss 

p1
dX

dt
+ p2

dY

dt
+ p3

dZ

dt
= rY dZZP

(

aXZaZXZ + aXXdZP
)

(

Z −
rY aXX

aYXaXZ

)

.
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how these characteristics, and the associated transient 
dynamics, affect the possibility of observing structural 
resilience in realistic ecosystems. Lastly, we discuss 
how an understanding of structurally resilient networks 
could be used in a conservation context.

Network structures with structural resilience

A total of 339 networks exhibit structural resilience 
for at least one of the three species. Of these, most 
(212, ∼ 63% ) exhibit structural resilience for two of the 
three species (see Figure S2 for example). We categorize 
these networks into four motifs based on the specific 
combination of interspecific interactions that enable 
structural resilience. Figure 3 shows three examples of 
each type of network. The full list of 339 networks (with-
out assigned sign structure) can be found in Figure S3.

The first structurally resilient motif consists of two 
predator–prey reactions across three trophic levels 
(Figure 3a–c). This motif achieves structural resilience 
via a species at the bottom of the food chain which ab-
sorbs the perturbation. This motif was present in 35 net-
works, of which 77% exhibited structural resilience for a 
second species.

The second structurally resilient motif uses a feedback 
loop to maintain species abundances, where a change 
in the abundance of Z loops back through the network 
to Z (Figure 3d–f). Here, species are connected by one 
(Figure 3d), two (Figure 3e), or three (Figure 3f) one- way 
interactions. At least one of these interactions must be 
one- directional to enforce a direction on the feedback 
loop. This is the most common motif, with 229 networks, 
of which 168 (73%) have structural resilience for two of 
the three species.

The third and fourth structurally resilient motifs are 
dependent on a single ‘predator–prey’ interaction, with 
a third species that either does not contribute to the 
mechanism (motif 3 in Figure 3g–i), or contributes as a 
‘regulating’ species (motif 4 in Figure 3j–l). In Type III 
motifs, the single predator–prey reaction between Z and 
an intermediate species enables structural resilience. 
Additional one- way interactions from the predator and 
prey can ‘regulate’ the third without it influencing their 
abundances. In Figure 3i, there is a notable distinction 
where the predator–prey interaction occurs between X  
and Y . In this network, species X  has structural resil-
ience, and confers the property to species Z via the one- 
way interaction (see Figure S2). Motif 3 was represented 
by 40 structurally resilient networks, of which only 43% 
had structural resilience for a second species.

In Type IV motifs, the species outside of the preda-
tor–prey interaction influences the abundance of the 
predator and/or prey, via one- way interactions. The 
third species is effectively isolated and will never have 
structural resilience: It either never reacts to a change 
in perturbation (Figure  3j,k), or its abundance always 

changes with the perturbation (Figure 3l). The interme-
diary species—which participates in the predator–prey 
interaction with Z—always changes following a pertur-
bation, since it must absorb changes to enable structural 
resilience in Z. As a consequence, in networks that fol-
low Type IV motifs, only one species exhibits structural 
resilience.

We examine all five ways in which the perturbation 
can affect the network (excluding the sign and strength of 
those interactions): (i) X ; (ii) Z; (iii) X  and Y ; (iv) X  and 
Z; (v) and X , Y , and Z. Only three of these combinations 
have networks capable of structural resilience: X , Z or 
X  and Z. Structural resilience cannot be found when the 
perturbation impacts X  and Y , or impacts all three spe-
cies. This result implies that structural resilience cannot 
occur when a perturbation directly affects all species in 
the network, as it might for climatic perturbations such 
as climate change. This mirrors results from biochemical 
kinetics, where networks of any size cannot exhibit ro-
bust perfect adaptation when all components are simul-
taneously perturbed (Araujo & Liotta, 2023a, 2023b).

Structurally resilient motifs have some ecologically 
unusual properties. All four motifs contain species with 
intrinsic growth and self- regulation terms, but none in-
clude these terms for all three species. Many of the 339 
networks that are capable of structural resilience are de-
pendent on one- way interactions (Figure 3d–l), although 
not networks with the Type I motif. A few contain multi-
ple one- way interactions in sequence (Figure 3e,f).

Large oscillations and transient dynamic 
limitations

Generalized Lotka- Volterra models often gener-
ate oscillatory transient dynamics (Anisiu,  2014; 
Wangersky, 1978), and the networks which we identify as 
having structural resilience also display this behaviour 
(Figure 4a). When impacted by a perturbation, some of 
our networks quickly asymptote to their equilibrium, 
but others rapidly oscillate in response, sometimes cy-
cling hundreds of times before returning to the setpoint 
(Figure 4a). If another perturbation occurs within this 
oscillatory period it is possible that a species can be 
perturbed to extinction, despite the network having 
the structural resilience property (Figure  4b). Studies 
of classical resilience often focus on how networks can 
be parametrically changed to reduce these oscillations, 
where one possible requirement is to enforce strong self- 
regulation terms (relative to the other interactions in 
the network) for more species (Anisiu, 2014; Carpenter 
et  al.,  2001; Hening & Nguyen,  2018; Holling,  1973; 
Lavorel,  1999; Meyer,  2016; Neubert & Caswell,  1997; 
Wangersky, 1978).

The oscillatory behaviour is related to the particu-
lar mechanism that generates the structural resilience 
property. In biochemical networks, two overarching 
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8 of 11 |   IDENTIFYING STRUCTURAL RESILIENCE

mechanisms have been identified as responsible for robust 
perfect adaptation (i.e., structural resilience): Balancer 
and Opposer mechanisms (Araujo & Liotta, 2018, 2023a, 
2023b). Balancer mechanisms require multiple ‘paths’ 
which connect the perturbed species to the output spe-
cies, where a path is a sequence of species interactions. 
These paths contain ‘computational’ species which effec-
tively ‘balance out’ changes caused by the perturbation. 
Importantly, for these paths to exist, the perturbed spe-
cies and output must be different species. An example 
of this structure is predator- mediated competition where 
one ‘path’ is the direct effect between the predator and 
prey species, and a second ‘path’ utilizes the indirect 
effect of the predator via its consumption of the spe-
cies which competes with the prey (Chase et al., 2002). 
Opposer mechanisms utilize a different class of ‘compu-
tational’ species, embedded within a feedback loop, that 
negates the effects of the perturbation. The feedback 
loop is a sequence of species interactions which connects 
the output species to itself, via other species. Unlike 
Balancer mechanisms, the perturbed species and out-
put species can be one and the same in Opposer mech-
anisms. Because these two mechanisms depend on the 
dynamics of the ‘computational’ species, the choice of 
modelling framework can alter which networks meet the 
requirements of the ‘computational’ species and display 
structural resilience.

All of the structurally resilient networks utilize 
Opposer mechanisms. In many of our structurally resil-
ient networks, the perturbation directly affects species Z. 
The perturbed species and output species is therefore the 

same, and these networks must utilize Opposer mecha-
nisms. In those networks where only X  is affected by the 
perturbation, we do not observe multiple ‘paths’ because 
of the presence of one- way interactions. Importantly, 
Opposers are known to create oscillatory behaviours be-
cause of the feedback structure (Araujo & Liotta, 2023a).

Implementation and applications

Mathematical modelling provides an opportunity for test-
ing conservation actions at low cost and without risk. 
In this section, we demonstrate how structural resilience 
could be identified and used in a conservation context. In 
Figure 5, we propose a coexisting four- species ecosystem 
consisting of a species of conservation value, Z, and a pest 
species, W . At time t1, a persistent press perturbation P
, such as an increase in specific human land- use, results 
in the valuable species decreasing to extinction (Figure 5 
dashed line). Our methods identify that without the pres-
ence of the pest, W , our network exhibits structural resil-
ience for species Z (Figure 3e). At t2 we therefore eradicate 
the pest species and observe that the valuable species is 
not only able to recover from the initial perturbation and 
persist, but it is able to recover its abundance following an 
increase in the perturbation at t3.

We have only examined small ecosystem networks in 
this work to allow for an exhaustive search of all struc-
tures. However, the methods which we have demonstrated 
can be applied to larger species interaction networks, alter-
nate modelling frameworks, and different perturbations. 

F I G U R E  4  Two examples of oscillating behaviour in structurally resilient ecosystems following press perturbations. (a) highly oscillatory 
response to perturbations, where increasing press perturbations increase the frequency and amplitude. (b) increasing press perturbations drive 
a species to extinction, even for ecosystems with structural resilience. Full details on the model equations, parameters and initial conditions are 
given in Supporting Information.
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The smaller networks which we have identified as being 
capable of structural resilience can also be modified, or 
they can be viewed as components of larger networks 
without the loss of structural resilience. Araujo and Liotta 
have defined several guiding principles for embedding or 
manipulating networks (Araujo & Liotta,  2018, 2023a, 
2023b), but generally, additional interactions must main-
tain the functionality of the specific mechanism which en-
ables structural resilience in the network.

In Figure  6, we demonstrate how the ecosystem in 
Figure  3e (Network A) can be altered to include extra 

interactions and species. The mechanism which enables 
structural resilience in this network is the feedback loop 
which follows the path Z → Y → X → Z, where Y  is the 
computational species which absorbs the change in pertur-
bation, maintaining the abundance of Z. When including 
new interactions, structural resilience will not be affected if  
we do not alter the direction of the feedback loop or directly 
affect Y . In Network B, we demonstrate how another species 
can be included along the feedback loop without losing the 
structural resilience property. We are also able to introduce 
interactions between X  and Z, or self- regulation terms on Z 
without losing the structural resilience property (Figure 6, 
Network C). In fact, by including self- regulation for Z, we 
are able to dampen the oscillations. However, by including 
interactions that directly affect Y , we alter the structural re-
silience mechanism and lose the property (Figure 6 Network 
D). Alterations such as these could be applied on a much 
larger scale to identify new networks. Networks can also be-
come larger if individual nodes become more complex. For 
example, Figure S4 demonstrates how additional nodes that 
introduce size or age structure into the ecosystem model do 
not affect its structural resilience.

CONCLUSION

In this study, we interpreted methods from biochemical 
kinetics to the context of ecological resilience theory. We 
focused on structural resilience—the ability of a subset 
of species within an ecosystem to perfectly return to 
their original, pre- perturbation abundances. Structural 
resilience is a strong but narrow subset of traditional re-
silience: It only applies to some of the components of the 
ecosystem, but it also applies to any ecosystem with that 
structure, independent of the strength of its parameters. 
This decreases the reliance on data to predict resilience 

F I G U R E  5  Demonstration of how a conservation action can 
save a species from extinction by creating structural resilience. 
The full network (top right) is feasible and stable and contains 
four coexisting species. However, the ecosystem is not structurally 
resilient, and so a press perturbation (black dotted line) drives 
the target species to extinction. However, removing species W  
and its network interactions (light blue in diagram) via a targeted 
press perturbation (action—red dotted line), creates structural 
resilience for Z in the remaining ecosystem (see Figure 3e). Species 
Z is thereafter able to persist, even in the face of a stronger press 
perturbation. Full details on the model equations, parameters and 
initial conditions are given in Supporting Information.

F I G U R E  6  Simulated abundance of a target species, Z, to press perturbations, in a range of modified networks. Network A is a known 
structurally resilient network from Figure 3e. In Network B–D, small alterations are made to the network as indicated by the yellow arrows. 
When adding interactions that do not directly alter the mechanism which enables structural resilience (Networks B, and C), then structural 
resilience can still be obtained, but if the mechanism is altered (Network D), then structural resilience is lost (purple line). Full details on the 
model equations, parameters and initial conditions are given in Supporting Information.
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and can utilize expert knowledge about interactions be-
tween species (Adams et al., 2020; Botelho et al., 2024; 
Peterson et al., 2021; Remien et al., 2021).

We identified 339 three- species networks under the 
generalized Lotka- Volterra equations which were capable 
of  structural resilience, most of  which displayed the prop-
erty for two of three species. Of these structurally resilient 
networks, our Type I networks resembled realistic hierar-
chical structures of  predation across multiple trophic lev-
els (Dunn et al., 2017; Kar et al., 2019; Lewis et al., 2014; 
Salomon et al., 2010). For the majority of  networks, we 
observed several features which seemed ecologically un-
usual, including the presence of one- way interactions 
sequences, the absence of some intrinsic growth and self- 
regulation terms and oscillatory behaviours.

Despite the small number of structurally resilient net-
works which we have identified, there are a multitude of 
alterations, such as larger networks, alternate modelling 
frameworks and perturbations, and age/size- structured 
behaviours, which we can test with these methods. This 
study presents an introduction to structural resilience in 
ecological networks and proves that the property may be 
found in ecosystems. In 2009, a study by Ma et al. (2009). 
which exhaustively identified resilience in biochemi-
cal reactions with three components provided critical 
insights into the phenomenon that led to a full under-
standing of the constraints and mechanisms that enable 
structural resilience in any- sized biochemical network 
(Araujo & Liotta, 2018, 2023a, 2023b). This study offers 
the same initial stepping stone, opening the door for 
more analytical studies in ecological systems.
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